
OBJECTIVE-C, MEET SWIFT
HOW TO INTRODUCE SWIFT INTO AN
OBJECTIVE-C CODEBASE

INTRODUCTION

Jake Carter

▸ Software Engineer, Omni Group — 2011 - Present

▸ Instructor, UW — 2014 - 2016

▸ Software Engineer, RogueSheep — 2008 - 2011

Agenda

▸ Why Swift?

▸ My Favorite Features

▸ HOWTO: Swift

▸ Adding Swift to an Objective-C App & Framework

WHY SWIFT?
MY FAVORITE FEATURES

Overview

▸ High Performance & High Productivity

▸ Modern: Multiple Return Values (Tuples), Optional
Arguments, Closures, Generics, Type Inference

▸ Safe: No uninitialized data, Promotes immutability, Array
bounds checks, Integer overflow checks, Raw pointers
marked "unsafe"

▸ Fast: ARM & x86-64 native, Tuned native collections, Swift-
specific optimizer, C-like procedural performance

My Favorite Features

▸ Mutability

▸ Value Type vs Reference Type

▸ let vs var

▸ Optionals

▸ To nil or not to nil, that is the question

▸ Generics

▸ Strongly typed collections

MUTABILITY

Mutability

▸ Changing the object in a variable

▸ Changing the state of an object

Value Type vs Reference Type

▸ Value Types

▸ Struct, Enum

▸ Reference Types

▸ Class, Closure, @objc, id

Constants vs Variables

let constant: Type = value

var variable: Type = initial value

let vs var: Value Type

struct Card {
 var rank: String
 var suit: String
}

let queen = Card(rank: "queen", suit: "hearts")
var anotherQueen = queen
anotherQueen.suit = "diamonds"

Card(rank: "queen", suit: "hearts")

let vs var: Value Type

let =
Card

“queen”, “hearts”queen

let queen = Card(rank: "queen", suit: "hearts")
var anotherQueen = queen
anotherQueen.suit = "diamonds"

Card
“queen”, “hearts”

Card
“queen”, “hearts”

Card(rank: "queen", suit: "hearts")

let vs var: Value Type

let =

var =

Card
“queen”, “hearts”

queen

queenanotherQueen

let queen = Card(rank: "queen", suit: "hearts")
var anotherQueen = queen
anotherQueen.suit = "diamonds"

Card
“queen”, “hearts”

Card
“queen”, “diamonds”

Card(rank: "queen", suit: "hearts")

let vs var: Value Type

let =

var =

Card
“queen”, “hearts”

queen

queenanotherQueen

let vs var: Reference Type

class Person {
 var name: String
 var birthDate: String
}

let frances = Person(name: "Frances", birthDate: "01/01/1983")
var anotherFrances = frances
anotherFrances.birthDate = "01/02/1983"

Person
"Frances", "…"

Reference Types

Person(name: "Frances", birthDate: "…")
Person

"Frances", "…"franceslet =

anotherFrancesvar = frances

let vs var

let var

Value Type Cannot change object;
Cannot mutate state

Can change object;
Can mutate state*

Reference
Type

Cannot change object;
Can mutate state

Can change object;
Can mutate state

*Functions that self-change Value Type must be marked mutating.

Value Type vs Reference Type

struct Card {
 var rank: String
 var suit: String
}

class Person {
 var name: String
 var birthDate: String
}

OPTIONALS

Non-Optional Type

var name: String = “Margaret”
name = nil

NIL CANNOT BE ASSIGNED TO TYPE 'STRING'

Optional Type

var name: String? = “Margaret”
name = nil

Optional Type

var name: String? = “Margaret”
name = nil

let chars = name.characters
VALUE OF OPTIONAL TYPE 'STRING?' NOT UNWRAPPED;

Optional Binding

var name: String? = “Margaret”
name = nil

if let name = name {
 let chars = name.characters
}

Optional Chaining

var name: String? = “Margaret”
name = nil

if let name = name {
 let chars = name.characters
}

let chars = name?.characters

Optional Binding vs Optional Chaining

var name: String? = “Margaret”
name = nil

if let name = name {
 let chars = name.characters
}

let chars = name?.characters
let chars: CharacterView

let chars: CharacterView?

GENERICS

Generic Collections

struct Array<Element> { … }

struct Dictionary<Key: Hashable, Value> { … }

Array

let names: Array<String> = ["Foo", …]

Array

let names: Array<String> = ["Foo", …]

let names: [String] = ["Foo", …]

Array

let names: Array<String> = ["Foo", …]

let names: [String] = ["Foo", …]

let names = ["Foo", …]

Dictionary

let nameAge: Dictionary<String, Int> = ["Pam" : 36, …]

let nameAge: [String : Int] = ["Pam" : 36, …]

let nameAge = ["Pam" : 36, …]

HOWTO: SWIFT
ADDING SWIFT TO AN OBJECTIVE-C APP
& FRAMEWORK

DEMO

Demo Wrap Up

▸ Added Swift to Objective-C App Target

▸ Bridging Header, Enabled Module Support, Subclassed
Objective-C class in Swift

▸ Swiftified Objective-C Framework Headers

▸ Nullability Annotations, Typed Collections

▸ Added Swift to Objective-C Framework Target

▸ NO Bridging Header/Must use Umbrella Header, Enabled
Module Support, Extended Objective-C class in Swift

▸ Utilized Framework Swift in App

Bridging Headers (From same App Target)

Import into Swift Import into Objective-C

Swift No import statement
#import

“ProductModuleName-
Swift.h”

Objective-C
No import statement;
Objective-C bridging

header required
#import “Header.h”

Apple Inc. “Using Swift with Cocoa and Objective-C (Swift 3).” iBooks. https://itun.es/us/1u3-0.l

https://itun.es/us/1u3-0.l

Bridging Headers (From same Framework Target)

Import into Swift Import into Objective-C

Swift No import statement
#import <ProductName/

ProductModuleName-
Swift.h>

Objective-C
No import statement;
Objective-C umbrella

header required
#import “Header.h”

Apple Inc. “Using Swift with Cocoa and Objective-C (Swift 3).” iBooks. https://itun.es/us/1u3-0.l

https://itun.es/us/1u3-0.l

Importing Frameworks

Import into Swift Import into Objective-C

Any language
framework import FrameworkName @import FrameworkName;

Apple Inc. “Using Swift with Cocoa and Objective-C (Swift 3).” iBooks. https://itun.es/us/1u3-0.l

https://itun.es/us/1u3-0.l

THANK YOU

@JakeCarter
AverageJake.com

http://AverageJake.com

